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Abstract

A first order analytical approximation of the tesseral harmonic resonance perturbations of the Keplerian
elements is presented, and the mean elements (the Keplerian elements with the long period portions
averaged out) will also be given in closed form. The results of a numerical test, which compares the
analytical solution against a numeric.'l integration of the Lagrange equations of motion, will be
summarized, and the implementation of the solution in the analytical orbit determination routine ANODE
(at Lincoln Laboratory) will be outlined.
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AN ANALYTICAL TREATMENT OF RESONANCE EFFECTS

ON SATELLITE ORBITS

1. INTRODUCTION

Normally the longitude dependent tesseral harmonics in the expansion of the Earth's potential produce

only short period perturbations of satellite orbits, and these are small in comparison to the dominant

latitude dependent zonal harmonic J2. Typically analytical orbit determination routines (such as ANODE

at Lincoln Laboratory) carry the short period effects to o(J2), and so the tesseral harmonic effects are

ignored. When the mean motion of the satellite is nearly commensurate with the rotation rate of the earth,

however, the trajectory of the satellite repeats itself relative to the earth and the perturbations due to

certain 'critical' tesseral harmonics build up at each passage in the same spot. In this case, there can be

important long period effects which should not be ignored. In this report, we will present a first order

approximation of the isolated resonance effects by integrating the Lagrange equations for the general

perturbations directly. This solution is first order in the sense that the elements on the right hand side of

the Lagrange differential equations which are not expressed in terms of time explicitly are held fixed and

constant. The corresponding mean elements will also he given in closed form, and the results of a test

which compares the solution presented here with numerical integration of the equations of motion will be

summarized.

The problem of resonance effects on satellite orbits was treated by a number of authors throughout the

1960s. The reader is encouraged to consult Allan [1I, Garfinkel [2J, and Gedeon 131. Garfinkel solved

the so-called 'ideal resonance problem', which was applicable to a variety of resonant situations and

demonstrated how interesting and complicated the notion of resonance can be. In many ways, almost all

of the current literature on resonance can be traced back to Allan's paper [ I]. Gedeon expanded upon

Allan's analysis and presented a general study of resonance effects on satellite orbits by integrating the

equations of motion numerically. It is Allan's work, however, which influences the present study more

than the others. Indeed, almost all of the work in the literature on resonance effects on artificial satellite



orbits consider only the long period change in the 'broken-legged' longitude (i.e., the window of where

the satellite is). The changes in the other Kepleran elements are also important in generating an accurate

approximate ephemeris, and these changes are influenced directly by the acceleration of this longitude.

Allan's suggestion [1, p. 13321 of expressing the longitude as a function of time using the Jacobi elliptic

functions has spawned the idea in this report to exploit that representation of the longitude to yield a

complete analytical solution of the long period resonance effects on each of the Keplerian elements.

The solution given by Garfinkel [21 applied to the artificial satellite problem should yield the same

results as the solution outlined in this report. Recall that Garfinkel applied the von Zeipel method to solve

the equations of motion. Our solution will be obtained by integrating the equations of motion directly so

that each of the Keplerian elements will be given as explicit functions of time. The mean elements and

long periodic corrections can be readily obtained by manipulating the solution directly. Thus, we feel our

method is more simple to understand and to impiement in existing analytical saiellite orbit determination

routines where there is assumed to be no interaction between the various harmonics in the geopotential.

Our solution will work particularly well with the well-known classes of satellites effected by resonance

such as the near circular synchronous and half-synchronous satellites. It is for these objects that this study

is intended, and the work presented here is not meant to be an over-all treatment of the universal

resonance problem.

It is easiest to describe the appropriate resonance problem by considering Kaula's expression of the

geopotential disturbing function in terms of the Keplerian elements [4, p. 371:

V = Y. 1: 1 impq
1=2 m=Op=Oq=-where

Vip = a)csWnp
VM = _ 'F ,mp(i)G p(e)Jlm { cs1Ir ) for I-rn even

and a a IN sin(Wrlpq) for 1-m odd
and 'tnq

Wlmpq = (I - 2p)(o + (I - 2p + q)M + m(Q - 0 - KIm).

In the s Lord equation, Firp(i) is the inclination function, Glpq(e) is the eccentricity function, .t is

Newton's gravitational constant times the mass of the earth, J,,t,=fc + isthe(unnormalized)

coefficient of the spherical harmonic of degree I and order tn, Kim = -tan -I (Sim/Cim) is the corresponding
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reference longitude along the equator, a is the semimajor axis of the satellite orbit, and ae is the (mean)

radius of the earth. In the equation for the angular argument y, M denotes the mean anomaly, (o is the

argument of perigee. 0 is the mean Greenwich Sidereal time, and Q is the longitude of the right ascending

node.

We will write s = so + As to denote the mean motion in revolutions per day, where so is integral and

IAs < 1/2. Now exact orbital commensurability with the earth's rotation can be expressed as

M + - So(6 - Lj) (1)

Of course, we are using the dot over the eiement to denote differentiation with respect to time. With the

above equation as motivation, we introduce the following fundamental quantity of longitude through the

differential equation

LAs(

so

and by assuming (1) we write
I. ±( +,;)-6- i

So

Thus. we can rewrite Ylp q as

y4tnpq(t) I - 2p + q - T (M + W) + mI( - k'in) - q0w (2)

The underlying critical indices 'ill be those sets of 1, rn, p, q which satisfy

I -2p + q - = 0
So

The quantity X(t) can be physically interpreted as the osculating value of the longitude of the ascending

node of the mean satellite [3].

If we consider only the critical tesseral harmonics in the disturbing function, then the disturbing

function will take on the following form:

R = Vlrpq (3)
crit.

where

Ylmpq m(O. -lm)qo.
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To simplify the following discussion, we will temporarily assume that Impq = mk; that is, wre will

assume that either q = 0 or else that 6) = 0. One should see [3] for a more general treatment. At any rate,

these assumptions can safely be made if the eccentricity is very small or if the inclination is close to the

critical inclination (cosi = ± 1/',5). Now from the Lagrange equation of the general perturbation of the

semimajor axis j - it follows from (3) thatnaaM

'='2m ' e F1mp(i)Gtpq(e)J, -sin(XVhpq) for /-n even
crit.nsoa 2 a / cos(Wfmpq) for I - m odd

This change in the semimajor axis will in turn cause an acceleration in the longitude k

(4)

So  aa so

=-X3IMP (e)1FjMP~i)G qeJ,.1{sin4Itnpq" for I - m even
crt.Soa 3  c -OS)lirpq) for 1-ni odd

We have assumed that the accelerations of a. Q. and 0 are all negligible. In an attempt to analytically

integrate (4). we will assume that the elements a, e. and i on the right hand side remain fixed and constant.

Once this assumption is made, a first integral follows easily

k = C, (5)
crit. a-sO "

where C is a constant of integrttion.

The above differential equation (5) can only be integrated further analytically if we isolate one critical

tesseral harmonic in the disturbing function (3). If this assumption is made, a global approximation is

subsequently possible under the assumption that no two critical tesseral harmonics interact. For the

remainder of this report, we will restrict ourselves to this situation.
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2. THE SOLUTION OF THE SIMPLE PENDULUM PROBLEM

The simple pendulum problem in physics can be represented mathematically by the relation
4 = -Q 2sin i , (6)

where Q is positive and constant. The solution is not difficult to obtain, and we will outline the important

details for reference.

A first integral is found as in (5) and is

j 2 = C + 2Q 2cos4J

The integration constant C can be expressed in terms of the initial conditions W0 and 0, and we can write

C = %02 - 2Q 2cosW0 . Clearly C > - 2Q 2cosy, and so if C is small enough, then W will be prevented

from making a full cycle from 0 to 27r. If we write cosW = I - 2sin 2 (E) , then the sine of the maximum

deviation from the focal point of libration (if such a value exists) corresponds to = 0. Explicitly, we

have

sin2  _ C+2Q2  (7)

and whether or not Wr,, exists, w e can use the right hand side of (7) (which is always defined) to introduce
k 1- /sin (-W)

2

Notice that the representation for C in terms of the initial conditions implies that

sn2r _0 2 + 2Q 2( I - cosW0)
n2 4Q2

and so it will follow that

sign(k) = sign( O)

Hence.

2 =4Q2[sin 2 ( ) - sin 2 ( -I)- 4 [I - k2sin 2 (-I)

2 2 2



, d, 1 ,e : .cp. c tc, ables and integrate

.1 i dt

It' c ,cp,.r:tw itc c ,ra ,,n the left side into two integrals and make the substitution ¢ = -. then we
2

obtain the ! , r t

_ i: 2dO : 2  2dO

VI - k2sin2- 0 "1 - k2sin 20

or

2 do1 - ksin2

% where Fik, * denotes an incomplete elliptic integral of the first kind.

The solution gets a little complicated at this point, for if there does exist a maximum deviation from the

libration focal point, then JIk> I and we must use the transformation

I I -F(k. k) -F (k, sin -(ksino)

Hence. in this situation %e must transform (8) to

U = O(t- t0) + F sin (ksin-)) (9)

fin do

V 11 I ,
0 1 sin

In the case where Ikl > I, we will say that yi is in libration, and when Jkl < I (i.e., the right hand side of

(7) > I). then we will say that W is in circulation. In this setting, W will 'go over the top'. If jkl = I, then

W will be in the rare situation of being exactly 'stalled' between circulation and libration. We will ignore

this possibility since it is highly unlikel) that it will happen in a situation involving artificial satellites

6



(and even if such a situation happens, then the nongravitational effects will quickly force the object into

either circulation or libration). Garfinkel [2, p. 660] has pointed out that in this case the elliptic functions

degenerate into hyperbolic functions, and so an analytical solution is possible in this case as well.

In the case that Ik I < 1, then there will not exist y, and y will be allowed to circulate from 0 to 21r.

The complete solution for y can be obtained from (8)

sin (Y) = sn(u, k) , (10)

where sn(u. k) is a Jacobi elliptic function. There is a large amount of literature on the elliptic integrals

and elliptic functions, and calculation to any desired accuracy is possible by quickly converging series. A

good reference to consult for the complete theory of these transcendental functions is Whittaker and

Watson [8]. In the libration setting. the complete solution of y can be obtained from (9) and is

ksin (i)=sn (u!). II
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3. THE SOLUTION OF THE LAGRANGE EQUATIONS OF MOTION

If we become a little less restrictive than we were in the introduction and allow q to be not zero with o)

allowed to vary (but having no acceleration), and if we isolate ourselves to one critical tesseral harmonic

in the disturbing function, then we establish the following differential equation similar to (4):

fni =pJ sin W for I- m even
So  L-cos t0 for I - ri odd

where

p _ - (-e) 1FmpWiGlpq(e)j,,

s2a3 a

and we have dropped the subscripts of tW. It is the product Fl,,p(i)G ,,,(e) which determines the sign of P,

and so by adding a multiple of 7r or of it/2 to W. if necessary, we can set

Q 1-,-(ae)'.F,,mpvq(e)[J,.,

v[ so-a-

and produce the form ( -Q 2sin xv as in (6). Our assumptions insure that Q is a positive constant, and

so the solution outlined in the previous section is applicable. It is interesting to note that the application

of the simple pendulum to resonance problems dates back to Laplace. who in 1800 was investigating the

Galilean satellites.

The Lagrange equations of the general perturbations of the Keplerian elements are listed in Kaula

[4. p. 29] and are reproduced here for the convenience of the reader.

da 2 0R
dt na aM

de I - e2 aR _ 
- e2 aR

dt nea2  aM nea 2  ao

do --cos i aR " 1 - e- 7 R
- na2l - e2sini nea2 e

9



di cos i R I aR
dt na241 - e2sin i - na2 e2sin i

dil I aR

d na241 e2sini i

dM I - e2 aR 2 DR-- n 2 - - --

dt nea2  -e na a

The n appearing on the right hand side denotes the mean motion (expressed in the proper units). It is

clear that if we remain consistent with our first order development and continue to hold a, e, and i

constant on the right hand side, then we can separate the above system of differential equations and

integrate directly. Keeping in mind that R in (3) is restricted to one critical tesseral harmonic, it is clear

that in each of the Lagrange equations we must either evaluate I sin Wdt or else Jt cos ydt . We will

proceed to demonstrate how this is done.

Case I (Ik > 1) Libration.

Recall that in this case ksinY = sn (it. In this regime, we can recenter the longitude. if necessary, so
2ea s

that Y is restricted to the first and fourth quadrants, and so cos (Y) = V1 - sin 2 (Y) . With the
2 2)

representation of sin (2), an identity of elliptic functions yields

Cos ) =V'I - Isn2 , = Vdn 2 (u. dn (u.,

cos 2 k) = n k

Here we have relied on the fact that dn (u.)I is always positive when the argument u and the modulus

are real. For the elementary properties of elliptic functions that will be assumed, the reader should

consult [8].

We can now evaluate
[ ft 1/ 2 2  1

tsinWdt= 2sin () cos (Y) dt = ok sn (u dn (u ) dt

1t f 2 1t /l\k

= U sn (u,)dn (u )du= cn -cn ,1

10kQ k

10



where u = u(t) and u0 = u(to). Furthermore,

fcos dt = I 2cos2 (y) - Idt = -2dn2(1. ) 1 dt
0 f "tO

If 2dn2 (u, 

)
whereE ( EE [8. PP u 51- 18].

where E(u, 1) is the fundamental elliptic integral fodn 2udu [8, pp. 517-5181.

Case 2 (Ik < 1) Circulation.

Recall that in this case sin (Y) = sn(u, k). We must consider u in (8) as a uniformizing variable. As

time increases, either u always increases or always decreases (depending upon the sign of k). In a like

manner, W will always increase or always decrease depending upon the sign of 40 (which is the sign of k).

Hence it will always be the case that u and W are moving in the same direction as time increases; that is,
d_ is always positive in the circulation regime. Now if we differentiate both sides of the equation

sin- = sn(u. k) by u. we observe that
2

cos 2du ] cn(u, k)dn(u, k)2 2duJ

and since dn(u. k) is always positive, it follows that sign (cosy) = sign[cn(u, k)]. Moreover

cos 2  = 1 - sin 2  = - sn2 (u, k) = cn2 (u k)

and so it follows that cos (Y) = cn(u, k).
2

We are now in a position to evaluate the integral of sin Ndt:

Jsin wdt ft2sin (-)cos (-)dt ft2sn(u, k)cn(u. k)dt

2k2 2
to "tf o  0!)ft o

QJosn(u, k)cn(u, k)du = -[dn(u O. k) - dn(u, k)]
Qk!



For the integral of cos Wdt, we begin by writing

cos vdt = I - 2sin 2 (T dt = kf u I - 2sn 2(u, k)du
to '

and we consider the identity [8, p. 5161 u - k2fUsn 2udu = JUdn 2udu. Hence,0 00
fcoslvdt = k[u - u0] - 21(u - uo) - [E(u,k) -

°to

2 [E(u, k) - E(uo , k)] - k,2 l (u - u0 )
TQ kQ

where k 2 = I - k2 denotes the complementary modulus.

The mean motion, n, on the right hand side of the Lagrange equation for the rate of change of the mean

anomaly should not be assumed constant in a first order treatment; for the mean motion appears in the

equation for the rate of change of M in the unperturbed situation also. Since n = tl/2a-3/2 , where p. is

constant, we can use the solution for a outlined above to compute the integral ft ndt.
tr)

In our restricted resonance problem, we have that

2aso ,

3nm

and if we write

A 4asoQ
3nmk

then it will follow that

a =a +A Acn (uoJk') - cn(uj) for Ikl > I

dn (u 0k) - dn (u k) for IkI < I 
b

We can write a = ao + 8 a' and use the binomial series to approximate n. We will write a = a0 I +

and expand

nf=f O[ ~(8a) + 15 (8a)12 (12)

12



from which point we will truncate the rest upon the assumption that the series drops off rapidly. There

are then four integrals that we need to evaluate, and with reference to 18, p. 5161, we will list these

integrals evaluated:

f ucn(u, )du = kan-lsn(u,!)/kdn(uJ) ,
U

f 0dn(u, k)du = am(u, k) = sin - (sn(u, k)} + j(u)it, j(u) integral

f~cn2 (, U du =k2 [E (u, ) E (uO T,) - 1'O0)

where E"2 = 1 - 1 and

f dn2(u, k)du = E(u. k) - E(uO, k)

The integral ft ndt can now be readily evaluated with the aid of the above integrals. Hence, each of the
-to

Lagrange differential equations of the general perturbations of the Keplerian elements can be separated

and integrated to yield the complete solution of the restricted resonance problem to first order.

Suppose that the disturbing function is isolated to one critical tesseral harmonic.

R ( a IF .p(i)Glpq(e)Wmcos y

where'V = m(X - X'tm) - qo + jit and = 1(M + o) - (0 - Q). Herej = 0, 1, 1/2, or 3/2 depending
so

upon the sign of Fmp(i)Gipq(e) and whether I - m is even or odd. Because this sign is important in the

equations which follow, we will use a symbol.

; - sign [Fmp(i)Gpq(e)I .

Upon calculating the rates of change of each of the Keplerian elements given by the Lagrange equations

of motion and applying the integration outlined in this section, we arrive at the explicit expressions for the

changes of each of the Keplerian elements to first order. For the convenience of the reader, we will list

these changes, where the elements n, a, e, and i appearing on the right hand side of each equation are held

13



fixed and constant from the initial osculating elements. To save writing, we will allow * to denote the

modulus k if Ikj < 1 and 1/k if I kI > I and we will write F'Imp(i) and G'ipq(e) to denote the derivative of

these functions with respect to their argument.

= A{cn(uo, *) - cn(u, *) for IkI > 1
dn(uO.*) dn(u, *) for IkI < 1

Be= ae mF,,~)Pel(I- e2 - VI-e 2 +qVI -e2I

na3 (a) SomFmpiGpqeIp e e J

k2 fcn(uo, *) - cn(u, *) for Ikl > 1
kQ dn(u O, *) dn(u, *) for IkI < I

03 ae "  ( cos/ F'mp(i) (G'pq(e)
-E -) O lqe - V1- I mpi

na 3 J a  V1 - e2 
1 sin

2[E(u, *)-E(u 0 , *) ] - I uO) for 1kj > 1
QQ
2-[E(u, *) - E(u0 , *) k2 +k (u - u) for Iki< I

i= - (..s

na3~ _ e2 sini a Fmp(i)G'pq(e)Vjn [qcos i + m - osi J

_2 1-cn(uO, *)-cn(u,*) for Ik! > 1
kQLdn(uO, *) dn(u, *) for IkI < 1

8n 4 (ae) 'JimaGqe PII~)
na3 l- e 2 a \sini/

-[E(u. *)-E(u0, *)- -u O) for Ikl> IlQ k2+

-[E(u, *) - E(uo. *)I - -(u - uo) for IkI < 1

and

SM n A cnuo, 15A cn2(uo, * ) - to)dn(u O,  8a2 {dn2(uo, *)/

14



F- - --

"k (--A a 15A 2 { cn(uo. *)\ tan-l[*sn(u *)/dn(u, *)]-tan-I[*sn(uo. *)/dn(uo*)]
Q 4a fdn(uo, *)J am(u, *) - am(u0 , *)

" 15kA 2  k[E(u, *) - E(uO, *) - W'2(u - u0 )]
8Qa2 f-E(u, *) - E(uo, *) )

- a I M  2(1 + )Fmp(i)Gpq(e)I - a(1 - e2)Flmp(i) ( ipq(e)) X

-[E(u, *) - Eu.*)1 + 0
-[E~u, E(uo,*1 -(£u - u0) for Ik < 

Q Q

The reader can observe that singularities occur in the above equations as the inclination approaches 0 or

as the eccentricity approaches 0 within the precision of the computer. In the case of near zero

eccentricity, since the eccentricity function Glpq(e) has order elq 1, we can choose q = 0 so that the

singularity in 8e is removable. Moreover, when q = 0, it can be seen from Kaula's expression for the

eccentricity function [4, p. 371 that G',PO(e) has order e, and so the case of the singularity with zero

eccentricity is of no consequence. Finally, in the case of near zero inclination, the singularity can often be

removed with the aid of the inclination function FImp(i). This is the case with the more dominant tesseral

harmonics such as J22 and J31, and so this singularity can be handled by avoiding the critical harmonics

for which the inclination function does not remove the singularity with sin i, i = 0.

It was noted earlier that the elliptic functions can be computed by rapidly converging series. A routine

was developed for computing the elliptic functions which was based upon the method outlined in the

appendix of [6]. This appendix evidently was based upon a section of Whittaker and Watson's

development of theta functions [8, p. 486], and while some argue that it is convenient to expand the

functions in terms of the modulus *, this algorithm transforms the modulus to a smaller parameter q, and

so the resulting expansions will always converge rapidly even for the troublesome case where the

modulus approaches one. This method was able to compute each of the elliptic functions to an accuracy

of 16 digits, and the algorithm was extremely fast. The function am(u, *), which up until this point has

been used but was defined in a somewhat ambiguous fashion, will be expressed more precisely in the next

section on mean elements.
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4. THE MEAN ELEMENTS

In this section, the mean elements will be isolated from the solution outlined in the last section. The

periods of the corrections to the secular changes will be given, and ii will shown that a, e, and i all have

constant secular change, while the agulai arguments co, Q2, and M all have a nonzero secular rate of

change. It should be noted here that Garfinkel [2] expressed his solution in terms of mean elements,

which he obtained by integrating the elliptic functions over their periods (as we will do shortly). Also,

Gedeon [3] gave an interesting comparative study of the long periods among satellites with varying

parameters. The mathematics involved at this point is not difficult due to the friendly nature of the

elliptic functions [8].

Let us introduce the number K = F(*, t/2), where (as before) the modulus * is assumed to be k if

Ik < I and Ilk if Iki > 1. The period of the functions sn(u, *) and cn(u, *) is 4K, whereas on(u, *) has the

smaller period 2K. Both sn(u, *) and cn(u, *) have an average value of 0 over a 4K period, and Garfinkel

[2, p. 663] has noted that the average value of dn(u, *) over a 2K period is it/2K. Since this is an

important fact and requires the evaluation of am(u, *) at any value of u, we will present a proof of this

fact.

Recall that in the last section we noted that fJUdnudu = amu. Since -t/2 5 sin -(snu) < t/2, we must

take into account the periodic nature of sn in order to write an exact formula for ani(u, *). Let r denote

the integer part of u/K and let s = r(mod 4). Then

sin-[sn(u, *)] + (r- s) if s= 0

am(u.*) = t- sin-l[sn(u, *)] + - s) if s = 1 or s = 2

2n + sin-l[sn(u,*)+2E(r -s) if s= 3

Therefore am(u, *) + am(u, nu I, where the part in braces is the periodic part with period 4K
2K 2K

and average 0, and ntu/2K is the secular portion. Hence,

1 2K Im2K

2JKdn(u, *)du = -am(2K,

K + [t - sin-'[sn(2K, *)] - ntj =
2K 2K 2K

17



We also require the secular partq of E(u, *) and tan-I [*sn(u, *)/dn(u, *)]. Now E(u, *) is not a periodic

function, but it can be expressed by the relation E(u, *) = Z(u, *) + Eu/K, where Z(u, *) denotes the

so-called Zeta function (which has a period of 2K and average 0) and E is a complete elliptic integral of

the second kind; i.e., E = E(K, *). The function tan-'[*sn(u, *)/dn(u, *)] is periodic with period 4K, and

the average over its period is 0, although this fact is not easy to prove.

In order to write the mean elements analytically, we must have analytical expressions for <Jt sin 4dt>,
-to

<f t cos wjdt>, and <f ndt>, where <.> represents the part of- with the periodic portions removed by
,to to

averaging. In order to write these explicitly, we must again divide the work ir,.o two cases.

Case I (Ik I > 1) Libration.

Siate <.. (.. ).> uv r a 4K period, we have that

fs.t 2cn 011)i <Jsin Wtdt> = Q
to kQ

The function E(u) has a nonzero secular rate of change. and so for the average of the integral of cos W, we

isolate the linear part and integrate the periodic part over its period of 2K. This becomes

< [2Eu0 2- E )0, J + - I (t - to )

to Kidt>= KQK

The secular part of the integral of the mean motion n is more lengthy because of the binomial series

expansion:

< n  = {[t n 40--A2cn (Uo. ) - A ktan 1  Isn ( 0  )/kdn (uo, )

l k2A2 [E (4o, ) +-j

+ n0 {I - Acn (uo, ) + A2cn2 (o !)

* 1 k-- - (t to)
1K
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Case 2 (1kj > 1) Circulation.

Since the average of dn(u, k) over a 2K period is t/2K, it immediately follows that

< sin idt> = 2 dn(uO, k) - n

Similar to case 1, we have

< cos ldt>= 2 [ - (I +k, 2 ) (t to)

and finally, we haivc

> nok j 3 15 ,

< ~ nd A---A n(uohi k) am(uok)J

8- E(u. 01)

* 3 - 5A 2dn(uo k)]t +5A2Eit )
12 4 1 2K

We are now able to observe from the Lagrange equations for the general perturbations of the Keplerian

elements that in each of the two cases, the secular rate of change is 0 for a, e. and i and nonzero for o. 0.

and M.
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5. THE NUMERICAL STUDY

The method described in the preceding sections was used in a FORTRAN computer program to

compare the long period propagation of the Keplerian elements with a numerical integration of the

Lagrange equations of motion (with which the resonance effects are accounted for automatically). A

variable step-size Adams predictor-corrector polynomial integrator was used for this comparison, and the

test was performed on a Harris 800 machine with quadruple precision (96 bit arithmetic). The integrator

was originally coded by Fred T. Krough at the Jet Propulsion Laboratory in Pasadena. California in April

of 1969, and it was adapted for Harris computers by E. Mike Gaposchkin at MIT Lincoln Laboratory in

November of 1982. The objectives of this study were:

1. to estimate the accuracy of the analytical theory over the long resonance period,

2. to investigate the parameters which effect the accuracy.

3. to observe the order of magnitude of the perturbation due to a critical tesseral harmonic,

4. to determine the decay in accuracy when two or more critical tesseral harmonics are

included in the disturbing function (and it is assumed in the analytical solution that no two

tesseral harmonics interact), and

5. to numerically compare the perturbation produced by one dominant critical harmonic with

that produced by more than one critical harmonic.

5.1. AN ERROR ANALYSIS

Before the comparative results are presented, it is necessary to optimize the analytical model in the

sense of minimizing the absolute error of the analytical solution of the total perturbation from the same

perturbation computed by numerically integrating the Lagrange equations of motion. In the analysis of

the solution, it is clear that one has complete flexibility in the choice of the elements a, e, and i which are

held fixed and constant in the solution. Apart from the use of 'Vo and t0 in the statement of the initial

value simple pendulum problem, one has freedom to change the choice of a, e, and i in the calculation of

the modulus k, the factor Q in the definition of u and in the evaluation of the integrals ,fr sin dt and

to
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f cos Wdt, and in the factors of sin W and cos N' in the Lagrange equations for the rates of change of the

elements. For notation, we will refer to a generic Keplerian element (except the mean anomaly) by a and

write e to denote the factor of sin V or of cos V in the Lagrange equation for the rate of change of a.

Therefore, we can write & = esin W or & = EcosW, and one holds r = E(a, e, i) constant over an entire

resonance period and proceeds to integrate sin y or cos y by computing k, Q, and the elliptic functions as

outlined in Section 3. It should not be surprising for one to observe that the mean elements can improve

the model. Indeed, the mean elements (a), (e), and (i) are constant over an entire resonance period, and

we will see that if they are positioned strategically in the analytical solution, then a significant

improvement is realized in a comparison with the numerical solution.

We can iterate on the integration procedure by computing the mean values (a(a. e. iP. (5e(a, e, i)). and

(8i(a, e, i)) as outlined in Section 4 and on each successive iteration compute &X((a), (e). (i)). where

(a) = ao +(a(a, e. i)), (e)=eo +(8e(a. e, i)), and (i)=io +(6i(a, e, i)) and the elements a, e, and i are saved

from the last iteration. Empirically, this procedure converges rapidly, and in fact. only two iterations are

essentially needed to realize the benefit.

Consider the error in the approximation of 8a for a synchronous object in libration with the harmonic

V2200- In Figure 5-1 we have plotted the error first for the situation where the initial osculating elements

a0, e0, and i0 are used to determine k. Q, and E and then for the situation where (a), (e), and (i) are used to

compute k, Q. and F. One can observe that in the first case the crror is growing without bound and in the

latter case the error is not only bounded, but the error is bounded by a small amount. Thus, in the

libration situation, the use of the mean elements optimizes the model of the motion in a pleasing way.

The above result makes sense physically since the mean values of a, e, and i correspond to the stable

equilibrium longitude of the oscillation, about which the motion is completely symmetrical.

Unfortunately, the situation is not as nice in the circulation regime since no such point of symmetry

exists. In fact, it has been observed that any values of a, e, and i in the analytical solution will cause the

error to grow without bound over time, but it has also been observed that it is possible to minimize the

growth by using the mean values in strategic places. The optimum is not achieved by simply using the

mean values in k, Q, and E as in the libration situation, but a study of seven synchronous objects in
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ERROR RESIDUAL FOR THE SEMIMAJOR AXIS
AN OBJECT IN LIBRATION WITH V2200
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Figure 5-1: The error curve with initial elements input and then with
the mean elements used to compute k, Q, and E

circulation with the harmonic V,0. has revealed that there are two cases where the savings can be

achieved. It was observed that if the value of (Kt sin Wdt) is positive, then the smallest growth is
tlo

achieved by using the initial osculating elements for the computation of k and Q and the mean elements

for the computation of 1, and if (J Isin ydt) is negative, then the smallest growth is obtained by using

the initial elements for the computation of Q and the mean elements for the computation of k and E. This

phenomenon is not well understood, but it appears to be consistent with every circulation object studied.

By using the change in semimajor axis 8a again as an example, we demonstrate the first case in

Figure 5-2 and the second case in Figure 5-3. Incidentally, the object in Figure 5-2 is very close to the

border between circulation and libration, and therefore, the error curve resulting from the mean input

appears bounded only because the original is bounded.

5.2. THE ALGORITHM

Armed with the above error analysis, we will outline the algorithm for computing the changes in each

of the Keplerian elements due to an isolated resonance harmonic. This algorithm is designed to minimize
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ERROR RESIDUAL FOR THE SEMIMAJOR AXIS
AN OBJECT IN CIRCULATION WITH V2200
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Figure 5-2: The error curve with the initial elements input and then with
the mean elements used to compute E
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Figure 5-3: The error curve with the initial elements input and then with
the mean elements used to compute k antd
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the variance from the numerical integration of the equations of motion, and tnis algorithm was used in the

numerical study which follows.

1. The osculating elements ao, eO.i0, y' and 0 are assumed given with an epoch time t0 .

2. The dependent variables k, Q, and c are computed as functions of the initial inputs.

3. The mean elements (a), (e), and (i) are computed as defined above.

4. If I kI > 1, then k. Q. and E are to be recalculated by using (a), (e), (i), Y0 and w0.

5. If 1kJ < I. then if (ft sin ydr) < 0. then k and E are to be recalculated using (a), (e). (i). VO,
to

and 1j0, and if (f'sin ydt) > 0, then only e is to be recalculated by using (a), (e), and (i).
to

6. For the change in the mean anomaly 5M, the integral fr ndt is to be computed as a function
to

of k, Q, A (as a function of mean elements), and the initial semimajor axis ao. Recall that

the elements a and n appearing are initial elements because of the binomial series expansion

which was used.

7. The variable u and the elliptic functions are to be computed so that each of the changes can

be computed as listed at the end of Section 3.

5.3. THE RESULTS

To realize the objectives of our study. four satellites were selected; three of the satellites were in a near

synchronous orbit, and the other was in a near half-synchronous orbit. Each of the satellites selected was

in a deep resonance with at least one critical tesseral harmonic; for it is in this regime A h-re the error is

more inclined to be significant. The objects' parameters were taken from an object file maintained by

Group 91 at Lincoln Laboratory. The objects are catalogued by the U.S. Space Command catalogue

system, and therefore, each object will be referred to by its catalogue number in that file. The objects

along with their (osculating) orbit parameters at the epoch cited are listed in Table 5-1.

For each object three plots will be presented. It was observed in each of the situations we considered

that, although each of the Keplerian elements was affected by a critical tesseral harmonic, only the mean
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TABLE 5-1

Object Parameters

Object No.

14867 15181 13636 16885

a km 42170.5898 42161.7406 42166.032 26553.963
n rev/day 1.0025 1.0028 1.00267 2.00635
e 2.71 X 10.3  1.961 X 10-3  5.714X 104  0.741

deg 348.875 180.467 350.703 288.15

i deg 1.597 1.087 1.816 63.257

n deg 85.081 84.648 104.407 79.338

M deg 236.463 179.122 306.277 25.459

A deg 73.778 116.064 345.24 35.459

epoch yr, day '87, 140 '87, 138.259 '87, 139.5 '87, 139.9

anomaly M and the semimajor axis a exhibited large changes. We have therefore restricted our

discussion to the perturbations of these two elements. For each object we have plotted the following:

1. the absolute error, or residual (the perturbation obtained analytically subtracted from the

perturbation obtained numerically), for the semimajor axis and the mean anomaly, of the

restricted resonance problem where the disturbing function is isolated to one critical tesseral

harmonic, and

2. the comparison of the perturbation in the semimajor axis for the situation when the

disturbing function is isolated to one dominant critical tesseral harmonic (V2200 for

example) with that for the situation where the disturbing function includes more than one

critical tesseral harmonic.

The last type of plot is generated entirely from numerical data and is intended to show not only the

magnitude and amplitude of the perturbations, but also to what extent a dominant critical tesseral

harmonic (if such a harmonic exists) is able to approximate the global problem.
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The three near synchronous objects were selected on the basis of the perturbation produced by the

critical tesseral harmonic V2 2 00. Object No. 14867 is closely commensurate with the rotation rate of the

earth and is in a secure libration about a stable equilibrium point. Object No. 15181 is also in libration

about a stable equilibrium point, but because of its initial longitude position, it is in a long libration about

that point with a large amplitude. Object No. 13636 is presently in circulation, but it is so close to the

border between circulation and libration that the presence of other geopotential harmonics or other effects

in the disturbing function (such as lunar and solar effects or solar radiation pressure) could cause it to

librate about the equilibrium point.

Among the synchronous objects (No. 15181, No. 14867, and No. 13636), the harmonic V2200 was

considered to be dominant, and the other harmonics included in the study were V3 1 0, V3300, V4 2 10 1 and

V4400. Notice that q is zero in each of the harmonics listed above because all of the synchronous satellites

in our study have small eccentricity. It should also be noted that, with each harmonic, the singularities

involving small eccentricities and small inclinations were removable. For the Molniya satellite

(No. 16885) with high eccentricity, the harmonic V 2 20- 1 was isolated as dominant, but it will be shown

that the harmonics V121 1 and V3 2 10 also produce effects of large amplitude. The harmonics V44 10 and

were also used in the study of this object.

The local (or isolated) residuals will be presented first. In Figures 5-4 to 5-11. the residuals for the

same object, element, and epoch are combined on the same plot. One can see from those plots that, ior

the most part, the analytical theory has performed satisfactorily in the isolated resonance problem (for

which it was designed), with the exception of the residuals for No. 13636 due to the harmonic V2200 and

for No. 16885 due to the harmonic V32 10. Both of these objects are in circulation with the respective

larmonic. In order to understand the nature of the residuals a little better, we will consider additional

parameters which are indigenous to the analytical solution. For each object, we will list in Table 5-2 the

values k, I/k, and X for the force which produced the largest amplitude in the residuals. For the three

synchronous objects, this harmonic is V2 2 00, and for Object No. 16885, this is the harmonic V3 2 10 .

Consider the residuals for the synchronous objects (Figures 5-4 to 5-9). Object No. 14867 is librating

about the stable equilibrium point 75'E, and its longitude position and velocity indicate that it has
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Figure 5-4: The isolated resonance pro b/em for a synchronous object

RESIDUAL OF THE MEAN ANOMALY
OBJECT No. 14867

0012-
- -V2200 400i + 3710

0.0 08- 0 V3300+A V4210 +
S0,006- XV4400 4

-~0.004-

D 0002-

Lu
c-0.002

-0.004 
0

-0.006.100000

L 000 0

0 02 0.4 06 081

(Thousands) TIME (d)

Figure 5-5: The isolated resonance problem for a sYnchronous object

28



RESIDUAL OF THE SEMIMAJOR AXIS
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Figure 5-6: The isolated resonance problem for a synchronous object
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RESIDUAL OF THE SEMIMAJOR AXIS
OBJECT No. 13636
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Figure 5-8: The isolated resonance problem for a synchronous object
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Figure 5-9: The isolated resonance problem for a synchronous object
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Figure 5-10: The isolated resonance problem for a semisynchronous object
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Figure 5-11: The isolated resonance problem for a semisynchronous object
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TABLE 5-2

Parameters Associated with the Analytical Solution

Object No.

14867 15181 13636 16885

k -5.295 1.51449 -0.9986 0.9263
1/k -0.1889 0.66 -1.0014 1.0796

K0 deg/day -8.267 X 10-2 3.12 X 10-2 -2.361 X 10-2 0.159
Harmonic 2200 2200 2200 3210

recently passed this point and is now decelerating west. The larger residuals for No. 15181 and

No. 13636 from the harmonic V2200 correspond to the larger amplitudes in the perturbations which result

from their respective longitude positions and velocities. Object No. 15181 is currently about 41' east of

the stable node, and although it is drifting eastward, it will soon be drifting west towards that point.

Because of the distance it has to travel, the energy it will attain when it reaches the stable point will cause

the amplitudes of the perturbations to be considerably more than those of Object No. 14867. Since Object

No. 13636 is drifting west, is in circulation, and is near the unstable equilibrium point 345°E, its energy

will also accelerate so that again large amplitudes in the perturbations will result. This analysis places the

residuals for the three synchronous objects in an appropriate context (the residuals for No. 14867 are

smaller, but so is the perturbation). For the semimajor axis, the difference in the amplitude of the

perturbation for these objects can be seen in Figures 5-12 to 5-14.

The amplitudes of the residuals displayed in Figures 5-10 and 5-11 for Object No. 16885 due to the

harmonic V3 2 10 are larger than expected, and it is not clear why these are much larger than the residuals

due to the harmonics V220-1 and V221 I. The object is in circulation with the harmonic V32 10 , has a large

drift rate, and the resonance period is much longer in this case than those periods from V220-1 and V221 I"

It is possible to blame this on modeling error since the object has high eccentricity and inclination, and so

the fundamental assumption X = fMls 0 may not be valid over this long resonance period. On a more

positive note, it is obser% ed that the effects due to the harmonics causing a libration (namely V220-I and

V22 1 1) appear to be modeled very well by the first order theory.
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Figure 5-12: Perturbation comparison of the local and global problem
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Figure 5-13: Perturbation comparison of the local and global problem
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OBJECT No. 13636 CHANGE IN SEMIMAJOR AXIS
V2200, V3110. V3300, V4210, AND V4400
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Figure 5-14: Perturbation comparison of the local and global problem

Consider now the plots in Figures 5-12 to 5-16. These graphs are generated entirely from data

computed from a numerical integration of the equations of motion, and each figure depicts the

perturbation in the semimajor axis in the two cases of the disturbing function containing one critical

tesseral harmonic and of the disturbing function containing five critical tesseral harmonics. Hence, the

interaction of the resonance effects is displayed.

Of the three synchronous objects, one can see that the perturbation from the global resonance problem

is best approximated by the isolated harmonic V2200 in the case of Object No. 14867. The period and

phase differ to a small degree, but the amplitude seems to match up exactly. This is also somewhat true in

the case of Object No. 15181, but the amplitude is several kilometers off in the isolated case and the

period is different. Still, one can make a case with each of these two objects that the isolated resonance

problem describes the perturbation reasonably well for a couple of hundred days. This is far from true in

the case of Object No. 13636. Indeed, the global perturbation looks almost as if a long and slow libration

about the stable equilibrium point is modeled, whereas we have already seen that this object is in

circulation when the disturbing function is isolated to one tesseral harmonic. Of course, this problem
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OBJECT No. 16885 CHANGE IN SEMIMAJOR AXIS
V220-1. V2211, V3210, V4410, AND V421-1
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Figure 5-15: Perturbation comparison of the local and global problem
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Figure 5-16: Perturbation comparison of the local and global problem
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arises from the fact that Object No. 13636 is close to the border between circulation and libration and the

other effects may cause the object to be perturbed in an entirely different fashion than predicted by one

harmonic. Hence, the motion close to the border between circulation and libration is very difficult to

predict, even though the object is in close commensurability with the earth's rotation and has favorable

parameters such as small eccentricity and inclination.

Finally, the plots in Figures 5-15 and 5-16 show the complexity involved when an object is in

resonance and has high eccentricity. Both of the forces V220- 1 and V212 11 have similar amplitudes, but the

periods are vastly different, and both periods are far from the period exhibited in the global perturbation.

Therefore, one has little hope in approximating the global problem by using one isolated critical tesseral

harmonic for this situation.

We are led to the question about the performance of the analytical approximation to the global problem

by assuming that the critical tesseral harmonics do not interact. Unfortunately, an unsatisfactory model of

the problem is made over an entire resonance period. Often the residuals exceed the actual amplitude of

the total perturbation. This is displayed in Figure 5-17, where the residual of the semimajor axis is

presented. The only positive point that can be made here is that in each situation. a good model of the

problem i. made over one to two hundred days, and sometimes this is better than if we relied on only one

harmonic to dominate and model the global problem over this time span. We conc,de that the

interaction between the harmonics is significant even in the most favorable situations.
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Figure 5-17: Residual for the global resonance problem
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6. THE RESONANCE ADDITION TO THE ANODE MODEL

The ANalytical Orbit DEtermination routine (ANODE) at Millstone Hill is an entirely analytical

propagation model which is tied to a least squares best estimate routine. This software is designed to fit

data in near real time for the maintenance and upkeep of the satellite object element sets in our data bases.

ANODE has been working on a routine basis for the past seven to eight years, but often the quality of the

element sets has been poor for synchronous and half-synchronous satellites because of poor data and the

lack of resonance in the propagation model. The original decision to leave resonance out of the

propagation was due to fears that resonance would slow down the routine and also because storage space

was a fundamental concern at that time. Beside those concerns is the fact that at that time the overall

quality of the data required that each object be updated every three to seven days. Since the resonance

correction would be very small over that time frame, it was not too difficult to reaquire objects with the

instruments that were used. Nevertheless, problems such as mistagging objects or losing (low-priority)

objects arose from sparse 'angles-only' optical data, poor quality data, and/or the lack of quality radar

range data. While better data would certainly improve this aspect of the problem, there is also a need to

improve the ANODE physical model. Moreover, the quality of data now available is much better than ten

years ago, and so there can be a longer time span between observation for much of the catalogue. This

will be important as an increasing number of objects in space place a greater strain on the space

surveillance network, and so it is necessary to improve the propagation model in ANODE to better system

performance.

The resonance corrections described in Section 3 have been added to ANODE, and this section will

outline how this has been accomplished. Before giving more detail, it is important to understand how the

ANODE model works without the corrections. We will use a boldfaced z to denote a vector containing

the six Keplerian elements.

The propagation in ANODE can be described by the following simple stepwise procedure. First, it is

assumed that mean elements z0 with an epoch time t. are input, and the secular rates i(zo ) are calculated.

The partial derivatives of these rates with respect to the input mean elements z0 are also calculated

ai(z3)
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where the formal notation that is displayed has been adopted from [7]. Now, for propagation to a

particular time t, ANODE propagates the mean elements

1 6 ic;

Z"(1) = z + i(t - to) + -(t - to)2y= jXjl (13)

adds the long periodic corrections

ZL(t) = Zm(t) + ALlZflt)] (14)

as a function of the mean elements, and adds the short periodic corrections to produce the osculating

element set

ZoS,(t) = ZL(t) + AS[zL(t)] (15)

The long periodic corrections AL arise from averaging the equations of motion over the period of the

moon (28 days) or the period of the motion of the argument of perigee, whichever is shorter, and the short

periodic corrections As come from averaging the equations of motion over the period of the satellite.

Now, in most deep resonance problems (where the order of magnitude of the perturbations is

significant), the period of the resonance motion is on the order of three years or more. This is much

lorger than the long period average described above, and therefore it is decided to add ihe resonance

corrections to the secular (or mean) elements. The resonance corrections are included by the following

additional steps. Resonance first must be initialized (as outlined in the first five steps of Section 5.2) as a

function of the osculating element set z,,,,(to) [as computed above in ( 15)] and a critical index set

representing a particular tesseral harmonic. Then. in order to propagate to a specific time t, the vector of

resonance corrections 6z (as produced at the end of Section 3) is added to the mean element propagation

(13)

Z* *(t) = Zr(t) + 6Z (16)

the long periodic corrections are computed as in (14)

ZL*(t) = Z,1*(t) + AL[Z,,*(t)] , (17)

and the short periodic corrections are added to produce the osculating element set as in (15)

Zosc*(t) = ZL*(t) + AS[ZL*(t)] (18)
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For the least squares fit procedure in ANODE, the analytical Jacobian of the computed pointing C(t)

with respect to the input mean elements z0 is needed [7]. The function C(t) is a vector containing the

topocentric coordinates (azimuth, elevation, range, and range rate) which point to the object from a

particular site. Since C(t) is merely a geometrical transformation from the inertial position computed

from the osculating element set, it is pointed out in [7, pp.9, lOithat the Jacobian can be computed by

using the chain rule

act)1I(t) )1 zOSt C M~ (19)
I J I JLJ(t) I I (- I I 99

where it is assumed that the matrix

[az",() J

is the identity (since it is a function of periodic corrections) and we can write

- 1 + a (( -j1 0) (20)

where l is the 6 x 6 identity matrix.

After the resonance correction is added, we need to change (19) to

[ ac(t) J [ Czf 1 (21)
-z0J taz.,*( J J

and (20) to

az aIzm (1) - (Z1 t ~ 1 (22)

- -- [ os((o)
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The first matrix on the right hand side of (22) is computed as in (20) and the second matrix is adequate to

approximate

azoI

because the error in so doing is, again, a function of periodic corrections.

Most of the work involved in computing the second matrix on the right hand side of (22) is of a routine

nature using the chain rule and product rules (and we will leave this to the reader), but for the

convenience of the reader, the partials of those elliptic functions which are relevant to the resonance

corrections are listed below in Table 6-1.

TABLE 6-1

Partial Derivatives of the Elliptic Functions

Function __a

au u ,

sn(u, k) 1cn(u, k) dn(u, k) -cn(u, k) dn(u, k) A

cn(u, k) -sn(u, k) dn(u, k) sn(u, k) dn(u, k) A

dn(u, k) -k2sn(u, k) cn(u, k) k [ksn(u, k) cn(u, k) dn(u, k) A - sn2(u, k)]dn~, k -ksnu, ) c~uk) dn(u, k)

E(u, k) dn 2(u, k) 1- [EI(k, k) - F(k, 0)] - dn 2(u, k) A

am(u, k) dn(u, k) -dn(u, k) A

A few preliminary comments are needed before the table of partial derivatives can be presented.

Suppose the argument u and the modulus k are given and set

0 am(u, k)

with

0V1 - k2sin 2
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and

n1(k, ) J 
1 - k2sin 2 )3/2

Since the integrand in the definition of F is continous, a direct computation (using the fundamental

theorem of calculus) yields

(k.)- (1 k2sin 20 )- 112

a4

and

A ___F(k, ) 1A- a --[11(k, 0) -- F(k:, 0)]

Finally, let the symbol E(k, 0) denote the incomplete elliptic integral of the second kind

E )(k, -) J'l - k2sin 2 d

The above procedure can be used for as many critical tesseral harmonics as desired by simply

calculating each set of corrections separately and adding them all together, but since no interaction is

modeled, the routine will decay in accuracy over time as discussed in Section 5. Nevertheless, for

surveillance purposes. where theory is coupled with real data and differentil correction, the routine

should be trustworthy within 100 or 200 days from the epoch. Since the other aspects of the ANODE

propagation model are not as accurate for this long, this should not be too discouraging.

As an example of how the resonance addition has improved ANODE, a simple test has been performed.

For an object in a synchronous orbit, we generated 20 days worth of simulated metric data using the

precision numerical integration program DYNAMO. Since the data created is essentially free of noise,

we were able to ignore the problem of bad data so that we could concentrate on the propagation model in

ANODE. For a force model in DYNAMO, we limited the effects to those caused by the geopotential

expansion through degree I = 4 and order rn = 4, and this includes all values of p and q for each pair
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(1, m). Hence, we only modeled the geopotential effects on the object which ANODE modeled, and we

are deftrring the effects caused by the moon and the sun to a later study. The data was sampled every

quarter of a day so that a thorough representation of the orbit over the 20 day period is gathered. As a

test, using the fit routine, we fit this data to the ANODE propagation model for three different cases: I -- a

geopotential model consisting of V20 , V30, and V40, II -- a geopotential model consisting of V20 , V30, V40,

and one resonance term V2200, and III -- a geopotential model consisting of V20 , V30, V4 0 , and three

resonance terms V2200 , V3 1 10 and V3300. Case I is the old ANODE model (without the lunar and solar

effects), case If contains the dominant resonance effect, and case III attempts to model the complete

problem (as much as is possible analytically).

Case I did not fit the data very well. After 10 least squares fit iterations, much of the data near the

extreme times was edited out and the root mean square (rms) residual for the azimuth was 0.045' for all

the data and 0.017' for the edited data, for the elevation was 0.018' for both sets of data, for the range

was 1.068 km for all the data and 0.3878 km for the edited data, and for the range rate was 0.0047 m/s for

both sets of data. All of the data fit nicely for case II and case III, and in each case only four iterations

were required. The rms residuals for case II were 0.004' for the azimuth, 0.002' for the elevation,

0.0907 km for the range, and 0.0034 m/s for the range rate, and the rms residuals for case III were 0.001'

for both the azimuth and the elevation. 0.0049 km for the range, and 0.0033 m/s for the range rate.

Hence, the latter model is able to recover the effects to within a millidegree in azimuth and elevation and

within 5 meters in range.
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7. SUMMARY

A first order analytical theory of resonance effects on satellite orbits has been developed and tested.

The motion is modeled by the motion of a simple pendulum with initial conditions, and is thus naturally

defined in terms of the elliptic functions of Jacobi. The theory has been tested against a numerical

integration of the equations of motion for the general perturbation of the Keplerian elements, and the

following conclusions can be drawn.

1. The theory is easy to manipulate directly to produce the periods, the mean elements

averaged over the resonance periods, the periodic corrections, and the partial derivatives of

the resonance corrections with respect to the input elements.

2. The method works best when one isolates the resonance problem to that of a single critical

tesseral harmonic, although this is seldom adequate to represent the 'real world' problem.

In fact, there is not guaranteed to be a dominant critical tesseral harmonic even in the case

of a circular equatorial orbit which is very near synchronous.

3. The global problem can be modeled analytically by solving the isolated resonance problem

locally and adding the effects together, but this is not a good model over a full resonance

period, and is only able to describe the motion with reasonable accuracy over a short time

span.

4. This method is good for a first approximation to the solution of the resonance problem, but

the theory should not be used for accurate predictions without iteration correction by

comparison with other data (such as observed data or numerically simulated data). Hence,

some applications of this theory are:

a. as a front end processor for a numerical integrator,

b. for addition to an entirely analytical theory which fits observed data in real time and

attempts to correlate targets quickly (i.e., this algorithm has been implemented in the

analytical orbit determination routine ANODE at Lincoln Laboratory).
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c. for gaining insight into a physical problem involving resonance such as a station

keeping pioblem or a probtern wich requires a gcneral notion of the long term

effect of a particular Keplerian element from a resonance force. An example of this

application is the initial modeling of the resonance effects which were important for

the design of a series of station keeping maneuvers for LES-8 [5].

5. An object which is commensurate with the rotation rate of the earth can be in deep

resonance with several tesseral harmonics, and the interaction often makes it difficult to

analytically model the motion either by assuming no interaction or by hoping one tesseral

harmonic will suffice. Two significant parameters which determine the resonance motion

are the initial longitude position and the initial longitude rate (along with the direction of the

longitude motion). The problem is compounded by the reality that an object may be in

libration with one critical tesseral harmonic and in circulation with others. Of course. either

libration or circulation will dominate, but the damage to the hope of modeling the global

problem by solving the isolated problem separately and adding the effects together is clear.

Moreover, it is clear from the magnitude of the amplitudes displayed that the resonance

effects on satellite orbits should not be ignored when an object is commensurate with the

rotation rate of the earth.
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